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Abstract

This article is concerned with dynamic simulation of catenary–pantograph interaction using simplified models. The

paper proposes the improvement of these models by considering an enhanced catenary stiffness model and contact

modelling based on lagrangian multipliers. The influence of both enhancements is discussed and investigated by means of

an exhaustive comparison between most common simplified models and the method proposed herein. The results show

that catenary stiffness modelling plays a central role at low train speed. Contact modelling allows a more accurate

description of contact force during contact losses and is the critical factor at high train speeds.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

This article deals with dynamic behaviour of the interaction between railway catenary and train
pantograph. The railway catenary or overhead line is made of a complex system of cables that provides the
electrical energy supply to the train by means of the contact between the pantograph of the vehicle and the
catenary itself. In its simplest form, the catenary consists of three main components. The contact wire supplies
the electrical energy to the train, the messenger wire provides sufficient stiffness to the catenary and the
droppers link both wires, see Fig. 1. Dynamic behaviour of the catenary–pantograph is reviewed in Ref. [1] by
giving an overview of the most important methods used to describe catenary and pantograph system
dynamics. From a more general railway perspective and regarding in particular flexible multibody techniques,
catenary–pantograph interaction is briefly reviewed in Ref. [2].

Two main groups of dynamic interaction simulation models exist. On one hand, there are authors that use
numerical methods to solve the full catenary–pantograph interaction problem. In Ref. [3] the authors use the
finite element method (FEM) to model the catenary; a nonlinear lumped parameter system to describe the
pantograph; and a penalty method to model contact between catenary and pantograph. The analysis of the
catenary–pantograph interaction using multibody computational techniques and Lagrange multipliers has
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Catenary and pantograph dynamic interaction.
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been recently studied in Ref. [4]. A more mathematical approach using partial differential equations coupled
to differential-algebraic equations can be found in Refs. [5–7]. Lumped masses linked to massless bars to
model the catenary and a linear lumped parameter system to represent the pantograph were used to study
overhead resonance with multi-pantographs in Ref. [8].

The main advantage of these approaches is that simulation results show a better agreement with real data.
However, the shortcomings are the high computational cost and the inherent numerical errors. Moreover, due
to computer and run time requirements, it would not be feasible to use these techniques to carry out parameter
studies, dynamic stability analysis or catenary–pantograph optimization.

In order to overcome these deficiencies, simplified models have been developed. In Ref. [9] the Fourier
transform is applied to an infinite string supported by springs separated by the span length, in order to
investigate the periodical dynamic stability. In Ref. [10] a linear dynamic model of one degree of freedom (dof)
with time varying stiffness coefficient is formulated and using a simplified stiffness function, the system is
treated as a Mathieu equation and the dynamic stability is analysed using the Floquet theory. However,
regarding stability analysis some deficiencies were encountered and applying Hill’s method of infinite
determinants in Ref. [11] the actual stability boundaries were presented. Fourier transform using Floquet’s
theory is applied to a periodically spring-supported string subjected to a moving load in Ref. [12]. Due to its
simplified or analytical nature, these models reduce the mathematical and physical complexity of the problem
and consequently the computational effort, decreasing the time required to run full simulations. Therefore,
these models are well suited for analysing dynamic stability or the influence of catenary and pantograph
parameters on the dynamic behaviour of the system. For instance, in Ref. [13], a dynamic sensitivity analysis
to choose the appropriate dynamic parameters of the pantograph is carried out using a linear lumped dynamic
system together with a simplified catenary stiffness model.

Most of the simplified models propose analytical approximations for the dynamic parameters of the
catenary, in order to avoid complicated FE computations from which they are obtained. The catenary stiffness
is simplified by fitting cosine functions to FEM results in Refs. [10,13]. Mass, damping and stiffness are fitted
to experimental data by superposition of cosine functions in Ref. [14]. Dynamic stiffness computation is based
on FEM calculations to determine the stiffness, density and tension catenary parameters in Ref. [12].
However, all these descriptions smoothen the actual mass, damping and stiffness along the span, avoiding one
important source of dynamic excitation.

The goals of the paper are to add some improvements to current simplified models and to discuss the effect
of these enhancements on dynamic interaction of the catenary–pantograph system. In this paper two
contributions are presented. Firstly, the influence of an improved stiffness model in the dynamic behaviour of
catenary–pantograph interaction is studied by applying the method published in Ref. [15] to compute the
catenary stiffness. The advantages of this method are accuracy, robustness and speed. Secondly, a contact
model using Lagrange multipliers is incorporated into the dynamic equations of the catenary–pantograph
system and its influence on the overall dynamic response is investigated. Due to the nature of both
enhancements, the equations can no longer be treated analytically anymore and numerical tools must be
employed to obtain a precise solution. Regarding these aspects, the proposed method must be considered as
one that is a mix between both complex and simplified models.
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As it is well known, Lagrange multipliers may inadequately model the case of loss of contact which is an
important issue in catenary–pantograph interaction. In Ref. [4] this problem is addressed by proposing a
penalty formulation that produces a unilateral force in order to substitute the interpenetrability constraint.
However, the problem remains open in the sense that this solution is only proposed and not studied. In the
method proposed here, the loss of contact and subsequent possible contact recovery is treated as a natural
consequence of the proposed formulation.

Another common assumption of simplified models is neglecting wave propagation, see for instance Refs.
[10,14]. One major exception is the dynamic catenary stiffness calculation presented in Ref. [12], which takes
into account wave propagation. However, recent papers using simplified models, i.e. [13] have carried out
dynamic sensitivity analysis without considering wave propagation in an attempt to find a tradeoff between
complexity and performance. In order to highlight the influence of the proposed enhancements, wave
propagation will be neglected in this paper.

The remainder of the paper is organized as follows. Section 2 describes the foundations of the method.
The goals of this section are twofold. On one hand, the proposed stiffness computation is reviewed
and implemented in the dynamic equations of the motion. On the other hand, contact modelling by
means of lagrangian multipliers is incorporated into the differential ordinary equations of the motion.
Section 3 provides the application of the aforedescribed method to simulate catenary–pantograph inter-
action and the comparison with more simplified models. Finally, in Section 4, the main conclusions of this
study are drawn.

2. Theoretical foundations of the method

In this section the method used to compute catenary stiffness is presented and the equations of motion of
the proposed simplified catenary–pantograph lumped model, including contact modelling, are derived.

2.1. Catenary stiffness computation

Let us consider a catenary overhead made of two main wires, called contact and messenger wires, connected
by a finite number of droppers, nd . Properties related to contact and messenger wires will be denoted
by cw and mw superscripts, respectively. Fig. 1 shows a sketch of the overall system. The connection points
between droppers, contact and messenger wires will be referred to as nodes. In what follows, the nodes
corresponding to messenger and contact wire will be denoted by j ¼ 1 . . . nd and b ¼ 1 . . . nd , respectively, and
the dropper which connects node j with node b will be referred to as dropper q. Horizontal and vertical vector
components will be denoted by subindexes x and y, respectively. The mass per unit length of droppers,
messenger and contact wires is denoted by lq, lmwand lcw. Railway overheads are subjected to messenger and
contact wire tensions, Tmw and Tcw, respectively, which are applied at the catenary boundary supports as
shown in Fig. 1.

Applying force equilibrium at messenger wire node j, contact wire node b, and dropper q, see Fig. 2, the
following set of equations are obtained:

Tjþ þ Tj� þ Rj þmjg ¼ 0, (1)

Tbþ þ Tb� þ Rb þmbgþ m ¼ 0, (2)

Rj þ lqsqgþ Rb ¼ 0, (3)

where index j and b refer to messenger and contact wire nodes, superindex þ applies to the right side of the
node and � to the left side of the node . The tension vector is denoted by T , node reaction is R, mj and mb are
the messenger and contact suspension clamp masses, respectively, sq is the distance between contact and
messenger wire nodes, g is the gravity acceleration vector and m is the force acting on the contact wire due to
the interaction between catenary and pantograph.

The horizontal component of Eqs. (1) and (2), states that the horizontal components of cable tensions must
be equal. Taking into account the fact that the tension can be written in terms of the horizontal components,
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Fig. 2. Droppers, messenger and contact wires force analysis.
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the following expression is obtained:

hðtÞ ¼ 0, (4)

where t ¼ ðTmw
x ;T cw

x Þ is the horizontal tension vector and h ¼ ðhmw; hcw
Þ can be expressed by

hmw
¼ Tmw

x cosh aij þ
xj � xi

2Cmw

� �
� Tmw; i ¼ 1; j ¼ 2, (5)

hcw
¼ Tcw

x cosh aab þ
xb � xa

2Ccw

� �
� T cw; a ¼ 1; b ¼ 2, (6)

where C is the catenary characteristic length C ¼ T=lg and a is defined by

aðx�; y�;xþ; yþ; lg;TxÞ ¼ Asinh
yþ � y�

2C sinh
xþ � x�

2C

� �
0
BB@

1
CCA, (7)

where Asinh ð�Þ stands for the inverse hyperbolic sine of �.
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Expressing the vertical component of tensions as functions of the catenary position, using the force
equilibrium at dropper, and canceling the reactions, the whole system of equations can be rewritten as

fðyj ; yb; t; mÞ ¼ 0, (8)

where yj ¼ ðy1; . . . ; yj ; . . . ; ynd Þ, yb ¼ ðy1; . . . ; yb; . . . ; ynd Þ and f ¼ ðf 1; . . . ; f q; . . . ; f nd Þ. The function f q

represents the vertical equilibrium of forces in terms of the vertical position of contact and messenger wire
nodes, yb and yj, respectively, and is defined by

f q
ðyj ; ybÞ ¼ Tmw

x sinh ajk þ
xk � xj

2Cmw

� �
� Tmw

x sinh aij þ
xi � xj

2Cmw

� �

þ T cw
x sinh aab þ

xa � xb

2Ccw

� �
� T cw

x sinh abc þ
xc � xb

2Ccw

� �

� gðmþ lqsqÞ þ m,

where m ¼ mj þmb is the total clamp mass of the dropper.
The catenary stiffness must be computed using an algorithm that firstly obtains the dropper length, that is,

computing the initial equilibrium configuration of the catenary due to its own weight and finally determining
the deformed configuration caused by the force exerted on the contact wire as consequence of the pantograph
interaction. In Table 1 the computation scheme is shown. A two nested Newton–Raphson procedure is
applied to solve the problem where Jacobian matrices are denoted by H ¼ qh=qy and F ¼ qf=qy. More
information on the method details and validation computations can be found in Ref. [15].
2.1.1. Initial equilibrium configuration

Determining the initial equilibrium configuration of the catenary involves finding the messenger wire
position which satisfies the constraint of an imposed contact wire position jb ¼ jðybÞ given geometry
properties, tension of contact and messenger wires, mass properties of droppers and clamps, and density of
contact and messenger wires. The solution of this problem is obtained using the first part of Table 1 where
AðyjÞ ¼ Fðyy;jb; t; 0Þ. Then, the dropper length can be easily computed as lq

¼ yj � jb.
Table 1

Stiffness computation algorithm

(1) Compute initial equilibrium configuration under m ¼ 0

Constraints: jðybÞ ¼ 0

while hðtnþ1Þ4TOL

tn ¼ tnþ1

tnþ1 ¼ tn � ðHðtnÞÞ
�1
� hðtnÞ

while fðy
j
nþ1Þ4TOL

yj
n ¼ y

j
nþ1

y
j
nþ1 ¼ yj

n � ðAðy
j
nÞÞ
�1
� fðyj

nÞ

end

end

(2) Compute deformed configuration under m
Constraint: Lðyj ; lqÞ ¼ 0

while hðtnþ1Þ4TOL

tn ¼ tnþ1

tnþ1 ¼ tn � ðHðtnÞÞ
�1
� hðtnÞ

while fðyb
nþ1Þ4TOL

yb
n ¼ yb

nþ1

yb
nþ1 ¼ yb

n � ðBðy
b
nÞÞ
�1
� fðyb

nÞ

end

end
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2.1.2. Deformed configuration

Once initial catenary configuration (i.e. dropper lengths) is determined, the stiffness function along several
spans can be computed. The stiffness can be regarded as the relationship between a given vertical force, m,
acting on a determined position of the contact wire, and the vertical displacement of this point. Therefore,
vertical coordinates of the messenger wire nodes can be expressed as functions of the unknowns as yj ¼ lq

þ yb

where the length of every dropper has been previously computed and therefore provide the equation
Lj ¼ Lðyj; lqÞ. Vertical displacements of the contact wire can be computed by means of the second part of
Table 1 where BðybÞ ¼ Fðyb;Lj ; t; mÞ. Once the vertical displacements of the contact wire are found, the
catenary stiffness at position xc can be obtained as

kcðx
cÞ ¼

m
yc

,

where yc is the vertical displacement of the contact wire at position xc.
2.2. Dynamic equations of motion

In this subsection a simplified model of the catenary–pantograph interaction is provided. The catenary is
described by equivalent mass, damping and stiffness of a 1 dof system. The pantograph is considered a 2 dof
lumped system. This description of the pantograph dynamics is one of the most widely used, see for instance
Refs. [8,10]. Let us consider the generalized coordinates y ¼ fyc; y1; y2g that represents the vertical
displacements of the catenary–pantograph equivalent system shown in Fig. 3. Subscripts c; 1; 2 stand for
catenary, pantograph head and pantograph base, respectively. In this kind of simplified model, it is usually
assumed that the pantograph head is always connected to the catenary contact wire, and furthermore, the
contact force is computed as the catenary stiffness multiplied by the catenary vertical displacement, see Refs.
[13,12]. One of the contributions of this paper is to add a more realistic description of the contact process
between catenary and pantograph, by modelling it appropriately.
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Fig. 3. Catenary overhead and pantograph equivalent model.
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The interaction between catenary and pantograph can be modelled in several different ways. The most
common approach consists of coupling dynamical equations of catenary and pantograph, by providing
equations that connect state variables of both systems. Despite the fact that controversy exists regarding
penalty methods and elastic elements to describe contact wire (as pointed out in Ref. [1]), a two-parameter
contact penalty model has been implemented, checked and applied in Ref. [3] with good results. Penalty
methods are easily implemented, especially using FEM. However, one important drawback of this method is
the selection process used to define the parameters of the method. In this paper a lagrangian contact model is
proposed to model the interaction between catenary and pantograph. As contact is point-to-point, Lagrange
contact method can be easily implemented, and the problem of selecting parameters to set up the calculations
is ignored. A more general three-dimensional framework of the Lagrange contact method and its application
to the catenary–pantograph interaction can be found in Ref. [4]. In this reference, a sliding joint constraints
the relative motion between catenary and pantograph in a plane perpendicular to the catenary centreline.
Another difference is that the method proposed herein uses a contact condition based only on displacements
and the aforecited reference constraints not only position but also velocity and acceleration. Moreover, and as
will be seen below, the Lagrange multiplier of the proposed contact model has a very clear physical
interpretation.

In order to include the contact forces, a condition where there is no penetration between catenary and
pantograph head must be imposed, that is Y ðyÞ ¼ y1 � ycp0. In order to fulfil this inequality a constrained
lagrangian, Lðq; _qÞ, is defined by

Lðq; _qÞ ¼ Tð_yÞ � V ðyÞ � mY ðyÞ,

where q ¼ fyc; y1; y2;mg are the generalized coordinates of the constrained problem, Tð_yÞ is the kinetic energy,
V ðyÞ the work done by conservative forces, and m is the Lagrange multiplier which in this context plays the
very clear role of contact force. The term mY ðyÞ can be regarded as the work done by contact forces. The
kinetic and potential functions are expressed by

Tð_yÞ ¼ 1
2

mc _y
2
c þ

1
2

m1 _y
2
1 þ

1
2

m2 _y
2
2,

V ðyÞ ¼ 1
2

kcy2
c þ

1
2
k1 ðy1 � y2Þ

2
þ 1

2
k2y

2
2,

where the symbols m, and k stand for mass, and stiffness, respectively. The nonconservative forces are viscous
forces with damping parameter c; which are described by the Rayleigh dissipation function

Dð_yÞ ¼ 1
2

cc _y
2
c þ

1
2

c1ð _y1 � _y2Þ
2
þ 1

2
c2 _y

2
2

and the external generalized forces are Q ¼ fF c;F1;F 2; 0g, which are the aerodynamic lift forces at catenary,
pantograph head and the external force applied to the pantograph base, respectively.

Finally, the dynamic equations of the equivalent catenary–pantograph system are obtained using the
Lagrange equation

d

dt

qL

q_q

� �
�

qL

qq
þ

qD

q_q
¼ Q

which leads to the following differential algebraic equation system with time-varying coefficients:

(9)
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where superscript T stands for transpose, M;C, and K are the mass, damping and stiffness matrices,
respectively, and can be expressed by

M:¼

mc 0 0

0 m1 0

0 0 m2

2
64

3
75; C:¼

cc 0 0

0 c1 �c1

0 �c1 c1 þ c2

2
64

3
75; K:¼

kcðtÞ 0 0

0 k1 �k1

0 �k1 k2 þ k1

2
64

3
75,

where

G ¼ ½�1; 1; 0 � and F ¼ ½Fc; F1; F2 �

is the external applied force vector.
It must be remarked that the mass of the catenary overhead is usually neglected with respect to the other

inertia contributions, see for instance Refs. [13,8,10]. The goal of this paper is to study the influence of contact
forces and catenary stiffness modelling, so in order to obtain a clearer picture of the effect of both aspects,
catenary mass and damping, and aerodynamic forces are disregarded in the numerical simulations.

From the inequality of the penetration constraint, Kuhn–Tucker conditions are applied to compute contact force.
If contact is present, due to the impenetrability condition Y ðyÞ, then y1 ¼ yc, the contact force is positive, m40 and
is obtained together with y from the integration of Eq. (9). If there is no contact between catenary and pantograph,
y1 � ycp0 then m ¼ 0, that is, the contact force is zero and y is calculated from the integration of Eq. (9).

3. Numerical simulation results

In the following, the results of the numerical simulations that have been carried out are presented and
discussed. The system of differential equations (9) has been solved by means of a fourth-order Runge–Kutta
method taking into account Kuhn–Tucker conditions.

The catenary and pantograph that are used to carry out the simulations are defined by Manabe and Fujii in
Ref. [8]. The catenary corresponds to the simple catenary presented in this reference and the pantograph
parameters are: m1 ¼ 6:5 kg, c1 ¼ 120Ns=m, k1 ¼ 39 kN=m, m2 ¼ 8:5 kg, c2 ¼ 30Ns=m, k2 ¼ 0 and
F2 ¼ 54N. These values correspond to the information provided by the aforementioned reference.

In Fig. 4 the stiffness variation along the span of the simple catenary defined by Manabe and Fujii [8] is
shown. In this figure two functions are represented: stiffness computed using the aforementioned method,
nonsmooth stiffness, and the smooth stiffness widely used by simplified dynamic models. The smooth stiffness
is calculated from the maximum, kmax, and minimum, kmin, values of stiffness by means of the function
proposed in Ref. [10] as

kðxÞ ¼
kmax þ kmin

2
1þ

kmax � kmin

kmax þ kmin
cos

2px

L

� �� �
. (10)

Two main differences can be found between them. The first one refers to the variability of the nonsmooth
stiffness, showing a more irregular pattern due to presence of the droppers which locally increments the
stiffness with respect to the smooth one. The second one is the important difference in value through the whole
catenary span, between smooth and nonsmooth stiffness functions. In fact, the ratio between mean smooth
stiffness and mean nonsmooth stiffness is about 1:2. Furthermore, at localized points smooth stiffness values
can be about two times nonsmooth stiffness values. As it will be seen later these two differences play an
important role in the type of obtained simulation results. It should be remarked that several authors used the
type of approximation shown in Eq. (10) but Refs. [12] or [13], for reasons unknown, fail to properly relate
stiffness approximation to computed stiffness results.

In order to understand how the simulation results are influenced by contact and catenary stiffness
modelling, the following models have been considered.
�
 SSNC stands for smooth stiffness and noncontact model. This formulation does not incorporate a contact
model and pantograph head, and catenary are always supposed to be in contact. Moreover, it will provide a
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basis for comparison purposes because it represents the simplest approach and it is also the most commonly
used.

�
 SSWC refers to a smooth stiffness with contact model. The results of this model take into account a smooth

description of the catenary stiffness but uses a lagrangian contact formulation to appropriately describe the
contact between pantograph overhead and catenary. Therefore, contact losses can be properly taken into
account.

�
 NSNC refers to a nonsmooth stiffness with noncontact model. In fact, this model uses a nonsmooth

stiffness function and considers catenary and pantograph overhead to be in contact at all times, and
consequently cannot be considered that proper contact loss is taken into account.

�
 NSWC stands for nonsmooth stiffness with contact model. Finally, this model fully exploits the benefits of

the method proposed herein by taking into account not only the nonsmooth catenary stiffness but also
proper contact modelling.

The equation of motion for every model can be easily derived from the more general case of Eq. (9).
Two main results are discussed. Firstly, maximum and peak-to-peak contact forces as a function of

operational train speed have been obtained. In this way, contact losses can be found when the peak-to-peak
contact force is greater than the maximum contact force. Secondly, and specifically, contact force time series
are represented for every model at two representative operational train speeds.

In Figs. 5 and 6 the comparison between SSWC and SSNC models is shown. This comparison determines
the influence of the contact model when smooth stiffness is used in the simulations. As was previously pointed
out in Ref. [10], the maximum contact force dependence on train speed when the SSNC model is used exhibits
three maxima for values of the ratio between frequency of span travelled and eigenfrequency of
catenary–pantograph system closer to 1; 1

2
, and 1

3
. For the SSNC model, the contact force exhibits a maximum

at ratios which correspond to velocities of approximately 410, 210 and 140 km/h, and shows a good agreement
with the theoretical values obtained in Refs. [10,12]. However, the SSWC model shows a smoother variation of
contact force with velocity, two maxima points about 140 and 270 km/h, and a quite different tendency at
train speeds higher than 250 km/h. Both models predict contact loss at train speeds higher than 130 km/h. The
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contact force response of the SSWC model at low train speeds is similar to the SSNC model but differs at the
train speed range in which contact losses are computed (from 130 km/h onwards). As SSWC includes the
proper contact modelling, maximum and peak-to-peak contact forces must be equal during contact losses.
One major weakness of the SSNC model is that when contact losses appear, the contact forces are incorrectly
computed due to the assumption that catenary and pantograph are always in contact. This aspect implies that
peak-to-peak forces are higher and that the contact force is amplified due to inertia effects. In Fig. 6, contact
force time series are depicted and differences when comparing contact or noncontact models are quite
considerable. Both of them present smooth time variation as both models share smooth stiffness
approximation. However, the SSNC model exhibits negative contact forces which are obviously impossible.
Conversely, SSWC shows a nonsmooth contact force time variation due to the fact that when contact loss
appear the contact force is zero. Therefore, the difference between SSWC and SSNC models at train speeds
higher than 180 km/h can be explained as a result of the contact loss in this range of velocities and the addition
of a contact model which becomes more important at high velocities.

In Figs. 7 and 8, SSNC and NSNC models are compared. These figures illustrate how nonsmooth stiffness
influences the computation results. Contrary to the SSWC, the main difference with respect to the reference model
occurs at low train speeds. The NSNC model predicts contact loss at train speeds higher than 260km/h and
contact force response shows three maxima at velocities of 360, 170 and 115km/h. Therefore, there exists a velocity
shift regarding train speeds at which maxima contact force is attained. This response shift mainly corresponds to
the difference between mean nonsmooth to smooth stiffness values. In fact, they are shifted approximately by a
factor of the square root of the mean nonsmooth and smooth stiffness ratio. Contact forces computed using
NSNC are lower at low speeds than the ones predicted by SSNC because nonsmooth stiffness is lower than smooth
stiffness, and both models compute contact force as catenary stiffness multiplied by the pantograph head
displacement. However, nonsmooth stiffness variability plays a key role at high speeds and it is responsible for
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higher contact forces in the vicinity of the maximum than those forces computed using smooth stiffness. Fig. 8
shows contact force time series for both models. When nonsmooth stiffness is considered, contact force time series
exhibit a dramatic change. Contact force time evolution does not show a smooth time variation due to local
increments of stiffness at the dropper connection which provides a nonregular distribution of stiffness. It can be
seen that this local variation is responsible for local increments in the contact force, which can eventually produce
contact forces higher than those obtained using smooth stiffness.

NSWC and SSNC models are compared in Figs. 9 and 10. The behaviour of the NSWC model is completely
different from the SSNC model, and inherits the two main differences shown by the aforementioned comparisons.
Contact loss appears at train speeds higher than 270km/h. At low train speeds, nonsmooth stiffness computes low
contact forces due to lower mean stiffness. At high train speeds, variability of nonsmooth stiffness and contact
modelling predicts a more regular variation of contact force dependency on velocity. In fact nonsmooth stiffness
variability increases the contact forces in the train speed range from 270 to 450km/h when these are compared to
SSWC model results, raising the maximum contact force from 280 to 350N. In Fig. 10, contact force time series
show a more irregular pattern because two sources of variability are now considered. Firstly, contact forces are
always positive, there exists contact between catenary and pantograp, or zero when there is contact loss. And
secondly, the local variability of nonsmooth catenary stiffness is also considered.

Summing up, it is clear that taking into account nonsmooth stiffness together with proper contact modelling
change dramatically contact force values when they are compared to values obtained using simplified models.
Broadly speaking, it can be stated that nonsmooth stiffness plays a key role at low train speeds, whereas the
contact model and stiffness variability are more important at high train speeds. Moreover, contact modelling
is key to a precise computation of contact wire wear phenomena, not only during catenary–pantograph
contact when friction processes govern contact wire wear but also at contact losses, where a reliable
calculation of mean displacement gaps is required to compute electric arc wear. Therefore, these two factors
are fundamental to understanding the dynamic behaviour of the interaction between catenary and
pantograph, and more significantly, most of the simplified models fail to incorporate them into their
computations.
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The authors are strongly convinced that these two improvements must be integrated into simplified
formulations in order to fully understand actual catenary–pantograph dynamic behaviour. It is important to
remark that the computational cost increment is not too high as it may seem at first sight. Despite the fact that
complexity of the problem increases, the fast catenary stiffness computation presented allows full simulations
to be run in a matter of minutes, thus the proposed method may be used to study parameter variations or
catenary–pantograph dynamic optimization in a more efficient way.
4. Conclusions

Many authors have avoided the use of the nonsmooth catenary stiffness function, and due to high
computational costs, have developed simplified stiffness descriptions in order to be used in dynamic
simulations. One of the contributions of this paper has been to investigate how catenary stiffness computation
affects the dynamic simulation of catenary–pantograph interaction. In order to achieve this, a robust and
accurate method to quickly compute the nonsmooth catenary stiffness function has been applied, which has
been useful in understanding that nonsmooth catenary stiffness plays a major role in predicting contact force
evolution. In fact, it has been found that predicted contact losses, when a simplified description of stiffness is
used, are not observed when the nonsmooth stiffness is used together with a contact model. Moreover, at low
train speeds, dynamic behaviour is highly influenced by the nonsmooth catenary stiffness while nonsmooth
stiffness variability increments contact forces particularly at high train speeds.

In this paper the influence of the contact force on the modelling of catenary–pantograph dynamic
interaction has been implemented and discussed. The inclusion of a contact model in simplified
catenary–pantograph dynamic models allows the correct treatment of the contact loss between catenary
and pantograph. The obtained results have shown that the addition of contact modelling to a simplified
dynamic model enhances the dynamic response at train speeds in which contact losses appear. Moreover, it
has been proven that the influence of contact modelling increases dramatically as train speeds increase. At high
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train speeds contact modelling plays a central role in understanding the dynamic behaviour of
catenary–pantograph interaction.

Due to the simplicity of the proposed model, i.e. point-to-point contact and one dimensional geometry, loss
of contact can be well predicted. However, Lagrange contact models can be somewhat not well suited to study
loss of contact in a more general geometry frameworks. In order to tackle loss of contact, the authors are
currently working on the extension of the Lagrange contact model to consider point-to-segment contact
together with perturbed lagrangian techniques.

Despite the fact that the enhancement presented herein clearly improves the results with respect to the most
common simplified models, wave propagation is neglected and this must be addressed in the proposed
method. To improve this aspect, the authors are working on the dynamic equilibrium equations of the railway
catenary, along the lines described in Section 2.1, in order to obtain an nonsmooth dynamic stiffness of the
catenary.

Finally a few words about dropper slackening can be very enlightening regarding the strong points of the
proposed model. An important aspect to take into account is that the stiffness of the catenary depends on the
actual contact force, mainly when the dropper slackening appear. At this point a nonlinear dependency of
catenary stiffness with contact force appear. Hence, it is really important to provide a contact model to
accurately compute the contact force, because when certain levels of contact force have been reached, catenary
stiffness is no longer independent of the contact force. Thus, coupling catenary stiffness dependence on
contact force with contact modelling ensure that nonlinear behaviour is accurately described.
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